Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Vicentin, Daniel Chieregato |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/181551
|
Resumo: |
O objetivo desta dissertação é abordar aspectos qualitativos de sistemas de equações diferenciais ordinárias e sistemas contínuos suaves por partes aplicados à dinâmica do Vírus da Imunodeficiência Humana (HIV). Neste trabalho, apresentamos um modelo matemático que descreve a dinâmica do HIV no corpo humano e o analisamos através da matriz da próxima geração e teoria de estabilidade, com a finalidade de prever se a doença fica ou não controlada. Posteriormente, estudamos um sistema de equações diferenciais ordinárias usado para modelar a dinâmica do vírus para diferentes tipos de tratamentos. Tal modelo foi explorado qualitativamente de duas maneiras: por um sistema contínuo (pelo método de Korobeinikov) e por um descontínuo (pelas convenções de Filippov). Analisamos o comportamento dinâmico de terapias antirretrovirais, visando a diminuição das concentrações virais no sangue, de acordo com a análise da estabilidade realizada. |