Polynomial Weingarten surfaces of tubular type
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/16052 |
Resumo: | This work seeks to contribute to the classification of Weingarten surfaces. More precisely, it fully classifies three families of surfaces (named tubular, cyclic and canal surfaces) in a tridimensional space form (Euclidean, Lorentzian and Hyperbolic spaces) that verify an arbitrary polynomial relation among its Gaussian and mean curvatures. The results obtained provide geometric features of the surface as well as algebraic conditions over the polynomial that defines a surface as Weingarten. Furthermore, results that allow us to investigate Weingarten surfaces only by the polynomial analysis are presented. |