Superfícies de Weingarten Lineares Hiperbólicas em R3

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: GUEDES, Luciene Viana lattes
Orientador(a): FERREIRA, Walterson Pereira lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Mestrado em Matemática
Departamento: Ciências Exatas e da Terra
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tde/1963
Resumo: The present work has been based by the [1] from Juan A. Aledo S´anches and Jos´e M. Espinar and [2] from Rafael L´opez articles. In those articles they studied hiperbolic linear Weingarten surfaces in R3 space, this is, surface whose mean curvature H and Gaussian curvature K satisfy a relation of the form aH+bK =c, where a, b, c 2 R. A such surface is said to be hiperbolic when the discriminant D := a2+4bc < 0.We obtain a representation for rotational hyperbolic linear Weingarten surfaces in terms of its Gauss map and we also present, in the case a 6= 0, a classification of linearWeingarten surfaces of hyperbolic rotation. As a consequence we obtain, in the case a 6=0, a family of complete hyperbolic linear Weingarten surfaces in R3. This contrasts with Hilbert s theorem that there do not exist complete surfaces with constant negative Gaussian curvature immersed in R3.