Weighted Sobolev theorem in Lebesgue spaces with variable exponent
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2007 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.1/11813 |
Resumo: | For the Riesz potential operator I-alpha there are proved weighted estimates [GRAPHICS] within the framework of weighted Lebesgue spaces L (P(center dot)) (Omega, omega) with variable exponent. In case Omega is a bounded domain, the order alpha = alpha (x) is allowed to be variable as well. The weight functions are radial type functions "fixed" to a finite point and/or to infinity and have a typical feature of Muckenhoupt-Wheeden weights: they may oscillate between two power functions. Conditions on weights are given in terms of their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential operators on the unit sphere S-n subset of R-n. (c) 2007 Elsevier Inc. All rights reserved. |
| id |
RCAP_1ab082fa12ad0e44ceec7447677f2de4 |
|---|---|
| oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/11813 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Weighted Sobolev theorem in Lebesgue spaces with variable exponentSpherical potential-operatorsFractional integralsMaximal-functionConvolutionFor the Riesz potential operator I-alpha there are proved weighted estimates [GRAPHICS] within the framework of weighted Lebesgue spaces L (P(center dot)) (Omega, omega) with variable exponent. In case Omega is a bounded domain, the order alpha = alpha (x) is allowed to be variable as well. The weight functions are radial type functions "fixed" to a finite point and/or to infinity and have a typical feature of Muckenhoupt-Wheeden weights: they may oscillate between two power functions. Conditions on weights are given in terms of their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential operators on the unit sphere S-n subset of R-n. (c) 2007 Elsevier Inc. All rights reserved.ElsevierSapientiaSamko, N. G.Samko, StefanVakulov, B. G.2018-12-07T14:58:01Z2007-112007-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11813eng0022-247X1096-081310.1016/j.jmaa.2007.01.091info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:32:13Zoai:sapientia.ualg.pt:10400.1/11813Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:25:47.281850Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| title |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| spellingShingle |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent Samko, N. G. Spherical potential-operators Fractional integrals Maximal-function Convolution |
| title_short |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| title_full |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| title_fullStr |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| title_full_unstemmed |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| title_sort |
Weighted Sobolev theorem in Lebesgue spaces with variable exponent |
| author |
Samko, N. G. |
| author_facet |
Samko, N. G. Samko, Stefan Vakulov, B. G. |
| author_role |
author |
| author2 |
Samko, Stefan Vakulov, B. G. |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Sapientia |
| dc.contributor.author.fl_str_mv |
Samko, N. G. Samko, Stefan Vakulov, B. G. |
| dc.subject.por.fl_str_mv |
Spherical potential-operators Fractional integrals Maximal-function Convolution |
| topic |
Spherical potential-operators Fractional integrals Maximal-function Convolution |
| description |
For the Riesz potential operator I-alpha there are proved weighted estimates [GRAPHICS] within the framework of weighted Lebesgue spaces L (P(center dot)) (Omega, omega) with variable exponent. In case Omega is a bounded domain, the order alpha = alpha (x) is allowed to be variable as well. The weight functions are radial type functions "fixed" to a finite point and/or to infinity and have a typical feature of Muckenhoupt-Wheeden weights: they may oscillate between two power functions. Conditions on weights are given in terms of their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential operators on the unit sphere S-n subset of R-n. (c) 2007 Elsevier Inc. All rights reserved. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-11 2007-11-01T00:00:00Z 2018-12-07T14:58:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/11813 |
| url |
http://hdl.handle.net/10400.1/11813 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0022-247X 1096-0813 10.1016/j.jmaa.2007.01.091 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598654945951744 |