Hardy type inequalityin variable lebesgue spaces
| Main Author: | |
|---|---|
| Publication Date: | 2009 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.1/12094 |
Summary: | We prove that in variable exponent spaces where L-p(.)(Omega), where p(.) satisfies the log-condition and Omega is a bounded domain in R-n with the property that R-n\(Omega) over bar has the cone property, the validity of the Hardy type inequality parallel to 1/delta(x)(alpha)integral(Omega)phi(y)/vertical bar x-y vertical bar(n-alpha)dy parallel to(p(.)) <= C parallel to phi parallel to(p(.)), 0 < alpha < min (1, n/p(+)), where delta(x) is approximately equal to dist(x, partial derivative Omega), is equivalent to a certain property of the domain Omega expressed in terms of alpha and chi(Omega). |
| id |
RCAP_99a2e938f61f69e8b5ce4c53c933d7d3 |
|---|---|
| oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/12094 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Hardy type inequalityin variable lebesgue spacesGeneralized LebesgueMaximal-FunctionSobolev SpacesL-P(Center-Dot)OperatorsWe prove that in variable exponent spaces where L-p(.)(Omega), where p(.) satisfies the log-condition and Omega is a bounded domain in R-n with the property that R-n\(Omega) over bar has the cone property, the validity of the Hardy type inequality parallel to 1/delta(x)(alpha)integral(Omega)phi(y)/vertical bar x-y vertical bar(n-alpha)dy parallel to(p(.)) <= C parallel to phi parallel to(p(.)), 0 < alpha < min (1, n/p(+)), where delta(x) is approximately equal to dist(x, partial derivative Omega), is equivalent to a certain property of the domain Omega expressed in terms of alpha and chi(Omega).Suomalainen TiedeakatemiaSapientiaRafeiro, HumbertoSamko, Stefan2018-12-07T14:58:34Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/12094eng1239-629Xinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:40:59Zoai:sapientia.ualg.pt:10400.1/12094Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:31:43.393701Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Hardy type inequalityin variable lebesgue spaces |
| title |
Hardy type inequalityin variable lebesgue spaces |
| spellingShingle |
Hardy type inequalityin variable lebesgue spaces Rafeiro, Humberto Generalized Lebesgue Maximal-Function Sobolev Spaces L-P(Center-Dot) Operators |
| title_short |
Hardy type inequalityin variable lebesgue spaces |
| title_full |
Hardy type inequalityin variable lebesgue spaces |
| title_fullStr |
Hardy type inequalityin variable lebesgue spaces |
| title_full_unstemmed |
Hardy type inequalityin variable lebesgue spaces |
| title_sort |
Hardy type inequalityin variable lebesgue spaces |
| author |
Rafeiro, Humberto |
| author_facet |
Rafeiro, Humberto Samko, Stefan |
| author_role |
author |
| author2 |
Samko, Stefan |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Sapientia |
| dc.contributor.author.fl_str_mv |
Rafeiro, Humberto Samko, Stefan |
| dc.subject.por.fl_str_mv |
Generalized Lebesgue Maximal-Function Sobolev Spaces L-P(Center-Dot) Operators |
| topic |
Generalized Lebesgue Maximal-Function Sobolev Spaces L-P(Center-Dot) Operators |
| description |
We prove that in variable exponent spaces where L-p(.)(Omega), where p(.) satisfies the log-condition and Omega is a bounded domain in R-n with the property that R-n\(Omega) over bar has the cone property, the validity of the Hardy type inequality parallel to 1/delta(x)(alpha)integral(Omega)phi(y)/vertical bar x-y vertical bar(n-alpha)dy parallel to(p(.)) <= C parallel to phi parallel to(p(.)), 0 < alpha < min (1, n/p(+)), where delta(x) is approximately equal to dist(x, partial derivative Omega), is equivalent to a certain property of the domain Omega expressed in terms of alpha and chi(Omega). |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2018-12-07T14:58:34Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/12094 |
| url |
http://hdl.handle.net/10400.1/12094 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1239-629X |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Suomalainen Tiedeakatemia |
| publisher.none.fl_str_mv |
Suomalainen Tiedeakatemia |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598700952223744 |