Local grand Lebesgue spaces on quasi-metric measure spaces and some applications
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.1/18479 |
Summary: | We introduce local grand Lebesgue spaces, over a quasi-metric measure space (X, d, mu), where the Lebesgue space is "aggrandized" not everywhere but only at a given closed set F of measure zero. We show that such spaces coincide for different choices of aggrandizers if their Matuszewska-Orlicz indices are positive. Within the framework of such local grand Lebesgue spaces, we study the maximal operator, singular operators with standard kernel, and potential type operators. Finally, we give an application to Dirichlet problem for the Poisson equation, taking F as the boundary of the domain. |
| id |
RCAP_113b77fc8d81db3c9f1529eb2cafc516 |
|---|---|
| oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/18479 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applicationsGrand Lebesgue spacesMaximal functionSingular integralsRiesz potentialWe introduce local grand Lebesgue spaces, over a quasi-metric measure space (X, d, mu), where the Lebesgue space is "aggrandized" not everywhere but only at a given closed set F of measure zero. We show that such spaces coincide for different choices of aggrandizers if their Matuszewska-Orlicz indices are positive. Within the framework of such local grand Lebesgue spaces, we study the maximal operator, singular operators with standard kernel, and potential type operators. Finally, we give an application to Dirichlet problem for the Poisson equation, taking F as the boundary of the domain.SpringerSapientiaRafeiro, HumbertoSamko, StefanUmarkhadzhiev, Salaudin2022-11-09T09:31:31Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/18479eng1385-129210.1007/s11117-022-00915-zinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:28:03Zoai:sapientia.ualg.pt:10400.1/18479Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:23:19.697582Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| title |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| spellingShingle |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications Rafeiro, Humberto Grand Lebesgue spaces Maximal function Singular integrals Riesz potential |
| title_short |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| title_full |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| title_fullStr |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| title_full_unstemmed |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| title_sort |
Local grand Lebesgue spaces on quasi-metric measure spaces and some applications |
| author |
Rafeiro, Humberto |
| author_facet |
Rafeiro, Humberto Samko, Stefan Umarkhadzhiev, Salaudin |
| author_role |
author |
| author2 |
Samko, Stefan Umarkhadzhiev, Salaudin |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Sapientia |
| dc.contributor.author.fl_str_mv |
Rafeiro, Humberto Samko, Stefan Umarkhadzhiev, Salaudin |
| dc.subject.por.fl_str_mv |
Grand Lebesgue spaces Maximal function Singular integrals Riesz potential |
| topic |
Grand Lebesgue spaces Maximal function Singular integrals Riesz potential |
| description |
We introduce local grand Lebesgue spaces, over a quasi-metric measure space (X, d, mu), where the Lebesgue space is "aggrandized" not everywhere but only at a given closed set F of measure zero. We show that such spaces coincide for different choices of aggrandizers if their Matuszewska-Orlicz indices are positive. Within the framework of such local grand Lebesgue spaces, we study the maximal operator, singular operators with standard kernel, and potential type operators. Finally, we give an application to Dirichlet problem for the Poisson equation, taking F as the boundary of the domain. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-11-09T09:31:31Z 2022 2022-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/18479 |
| url |
http://hdl.handle.net/10400.1/18479 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1385-1292 10.1007/s11117-022-00915-z |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598634297393152 |