Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators

Bibliographic Details
Main Author: Samko, Stefan
Publication Date: 2005
Other Authors: Vakulov, B.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/11861
Summary: We prove Sobolev-type p((.)) -> q ((.))-theorems for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p (x) and a two-parametrical power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces L-p(.)(S-n, p) on the unit sphere S-n in Rn+1. (c) 2005 Elsevier Inc. All rights reserved.
id RCAP_97e5005fa8f1ce8e51df96feceefe261
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11861
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Weighted Sobolev theorem with variable exponent for spatial and spherical potential operatorsGeneralized LebesgueFractional integralsSpacesConvolutionWeighted Lebesgue spacesVariable exponentRiesz potentialsSpherical potentialsStereographical projectionWe prove Sobolev-type p((.)) -> q ((.))-theorems for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p (x) and a two-parametrical power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces L-p(.)(S-n, p) on the unit sphere S-n in Rn+1. (c) 2005 Elsevier Inc. All rights reserved.ElsevierSapientiaSamko, StefanVakulov, B.2018-12-07T14:58:06Z2005-102005-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11861eng0022-247X10.1016/j.jmaa.2005.02.002info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:22:27Zoai:sapientia.ualg.pt:10400.1/11861Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:19:49.679746Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
title Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
spellingShingle Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
Samko, Stefan
Generalized Lebesgue
Fractional integrals
Spaces
Convolution
Weighted Lebesgue spaces
Variable exponent
Riesz potentials
Spherical potentials
Stereographical projection
title_short Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
title_full Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
title_fullStr Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
title_full_unstemmed Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
title_sort Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
author Samko, Stefan
author_facet Samko, Stefan
Vakulov, B.
author_role author
author2 Vakulov, B.
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Samko, Stefan
Vakulov, B.
dc.subject.por.fl_str_mv Generalized Lebesgue
Fractional integrals
Spaces
Convolution
Weighted Lebesgue spaces
Variable exponent
Riesz potentials
Spherical potentials
Stereographical projection
topic Generalized Lebesgue
Fractional integrals
Spaces
Convolution
Weighted Lebesgue spaces
Variable exponent
Riesz potentials
Spherical potentials
Stereographical projection
description We prove Sobolev-type p((.)) -> q ((.))-theorems for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p (x) and a two-parametrical power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces L-p(.)(S-n, p) on the unit sphere S-n in Rn+1. (c) 2005 Elsevier Inc. All rights reserved.
publishDate 2005
dc.date.none.fl_str_mv 2005-10
2005-10-01T00:00:00Z
2018-12-07T14:58:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11861
url http://hdl.handle.net/10400.1/11861
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
10.1016/j.jmaa.2005.02.002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598607395127296