Weighted Hardy and potential operators in the generalized Morrey spaces

Bibliographic Details
Main Author: Persson, Lars-Erik
Publication Date: 2011
Other Authors: Samko, Natasha
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/11731
Summary: We study the weighted p -> q-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces L-p.phi(R-n, w) defined by an almost increasing function phi(r) and radial type weight w(vertical bar x vertical bar). We obtain sufficient conditions, in terms of some integral inequalities imposed on phi and w, for such a p -> q-boundedness. In some cases the obtained conditions are also necessary. These results are applied to derive a similar weighted p -> q-boundedness of the Riesz potential operator. (c) 2010 Elsevier Inc. All rights reserved.
id RCAP_e66b991ffc53b31fabd8e486f2172aa7
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11731
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Weighted Hardy and potential operators in the generalized Morrey spacesSingular integral-operatorsFractional integralsMaximal operatorSufficient conditionsVariable exponentRiesz-potentialsBoundednessWe study the weighted p -> q-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces L-p.phi(R-n, w) defined by an almost increasing function phi(r) and radial type weight w(vertical bar x vertical bar). We obtain sufficient conditions, in terms of some integral inequalities imposed on phi and w, for such a p -> q-boundedness. In some cases the obtained conditions are also necessary. These results are applied to derive a similar weighted p -> q-boundedness of the Riesz potential operator. (c) 2010 Elsevier Inc. All rights reserved.Academic Press Inc Elsevier ScienceSapientiaPersson, Lars-ErikSamko, Natasha2018-12-07T14:57:51Z2011-052011-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11731eng0022-247X1096-081310.1016/j.jmaa.2010.11.029info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:17:09Zoai:sapientia.ualg.pt:10400.1/11731Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:16:35.133805Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Weighted Hardy and potential operators in the generalized Morrey spaces
title Weighted Hardy and potential operators in the generalized Morrey spaces
spellingShingle Weighted Hardy and potential operators in the generalized Morrey spaces
Persson, Lars-Erik
Singular integral-operators
Fractional integrals
Maximal operator
Sufficient conditions
Variable exponent
Riesz-potentials
Boundedness
title_short Weighted Hardy and potential operators in the generalized Morrey spaces
title_full Weighted Hardy and potential operators in the generalized Morrey spaces
title_fullStr Weighted Hardy and potential operators in the generalized Morrey spaces
title_full_unstemmed Weighted Hardy and potential operators in the generalized Morrey spaces
title_sort Weighted Hardy and potential operators in the generalized Morrey spaces
author Persson, Lars-Erik
author_facet Persson, Lars-Erik
Samko, Natasha
author_role author
author2 Samko, Natasha
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Persson, Lars-Erik
Samko, Natasha
dc.subject.por.fl_str_mv Singular integral-operators
Fractional integrals
Maximal operator
Sufficient conditions
Variable exponent
Riesz-potentials
Boundedness
topic Singular integral-operators
Fractional integrals
Maximal operator
Sufficient conditions
Variable exponent
Riesz-potentials
Boundedness
description We study the weighted p -> q-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces L-p.phi(R-n, w) defined by an almost increasing function phi(r) and radial type weight w(vertical bar x vertical bar). We obtain sufficient conditions, in terms of some integral inequalities imposed on phi and w, for such a p -> q-boundedness. In some cases the obtained conditions are also necessary. These results are applied to derive a similar weighted p -> q-boundedness of the Riesz potential operator. (c) 2010 Elsevier Inc. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-05
2011-05-01T00:00:00Z
2018-12-07T14:57:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11731
url http://hdl.handle.net/10400.1/11731
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
1096-0813
10.1016/j.jmaa.2010.11.029
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598579539705856