Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Lora, Mayra Ivanoff |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27082009-120419/
|
Resumo: |
Em Lora e Singer (Statistics in Medicine, 2008), propusemos um modelo Beta- Binomial/Poisson p-variado para análise dos dados provenientes de um estudo que consistiu em contar o número de tentativas e acertos de um exercício manual com duração de um minuto realizado por doentes de Parkinson, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo leva tais características em consideração, usa uma distribuição adequada para dados de contagem e ainda acomoda a sobredispersão presente na contagem dos acertos. Como generalização, inicialmente, propomos um modelo Beta-Binomial/Poisson-Gama que acomoda sobredispersão também para as contagens dos totais de tentativas, além incluir covariâncias possivelmente diferentes entre as contagens em diversos instantes de avaliação. Neste novo modelo, introduzimos um parâmetro que relaciona o total de tentativas com a probabilidade de acerto, tornando-o ainda mais geral. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Consideramos um outro conjunto de dados provenientes do mesmo estudo para ilustração da metodologia proposta. |