Detalhes bibliográficos
Ano de defesa: |
1995 |
Autor(a) principal: |
Ho, Linda Lee |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3136/tde-04072017-101027/
|
Resumo: |
Este trabalho apresenta uma análise estatística de contagens multivariadas proveniente de várias populações através de modelos de regressão. Foram considerados casos onde os vetores respostas obedeçam às distribuições Poisson multivariada e Poisson log-normal multivariada. Esta distribuição admite correlação de ambos sinais entre componentes do vetor resposta, enquanto que as distribuições mais usuais para dados de contagens (como a Poisson multivariada) admitem apenas correlação positiva entre as componentes do vetor resposta. São discutidos métodos de estimação e testes de hipóteses sobre os parâmetros do modelo para o caso bivariado. Estes modelos de regressão foram aplicados a um conjunto de dados referentes a contagens de dois tipos de defeitos em 100 gramas de fibras têxteis de quatro máquinas craqueadeiras, sendo duas de um fabricante e as outras de um segundo fabricante. Os resultados obtidos nos diferentes modelos de regressão foram comparados. Para estudar o comportamento das estimativas dos parâmetros de uma distribuição Poisson Log-Normal, amostras foram simuladas segundo esta distribuição. |