Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Amaral, Simone Silmara Werner Gurgel do |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-22112013-105455/
|
Resumo: |
Em estudos longitudinais, repetidas observações de uma mesma variável resposta são coletadas na mesma unidade experimental, em diferentes ocasiões. Como diferentes observações são realizadas na mesma unidade, espera-se que estas sejam correlacionadas, e que exista uma heterogeneidade de variâncias nas diferentes ocasiões. Dados longitudinais multivariados são obtidos quando um conjunto de diferentes variáveis respostas são mensuradas na mesma unidade experimental repetidas vezes ao longo do tempo; nesse caso, além da correlação entre observações realizadas na mesma unidade experimental, deve-se considerar também a correlação entre diferentes variáveis respostas. Uma forma de analisar dados longitudinais bivariados é empregar um modelo misto para cada uma das variáveis respostas e uni-los em um modelo misto bivariado especificando a distribuição conjunta para os efeitos aleatórios. As estimativas dos parâmetros desta distribuição comum podem ser usadas para avaliar a relação entre as diferentes respostas. Para exemplificar a utilização da técnica, foram utilizados dados de armazenamento de leite UAT. Os modelos lineares mistos bivariados foram ajustados por meio do software SAS e a análise gráfica foi realizada por meio do software R. Para seleção dos modelos empregou-se os Critérios de Informação de Akaike (AIC) e Bayesiano (BIC), e o teste da razão de verossimilhanças para comparação de modelos encaixados. A utilização do modelo linear misto bivariado permitiu modelar a heterogeneidade de variâncias entre ocasiões e a correlação entre diferentes medidas na mesma unidade experimental, bem como a correlação entre as variáveis respostas. |