Modelos de regressão bivariada: uma aplicação em equações mincerianas de rendimento

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Cunha, Danúbia Rodrigues da lattes
Orientador(a): Monsueto, Sandro Eduardo lattes
Banca de defesa: Monsueto, Sandro Eduardo, Casari, Priscila, Diaz, Mário Ernesto Piscoya
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Economia (FACE)
Departamento: Faculdade de Administração, Ciências Contábeis e Ciências Econômicas - FACE (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/8269
Resumo: In this work, bivariate regression models based on the bivariate normal, t and Birnbaum-Saunders distributions are used to analyze labor market data. In special, the objective is to model the dependent variable of the Mincerian earnings equation separately, namely, the variable hourly earnings (which is obtained by dividing gross monthly earnings by hours worked) is modeled in two parts, earnings and hours worked. The bivariate regression models are used to model these two parts in order to try to capture the correlation between them and the different effects, that is, remuneration or premium for labor effort, and the labor supply or the time that the worker offers to the market. In order to accomplish this, data from the Brazilian National Household Sample Survey (PNAD) for the years 2013, 2014 and 2015 are used. The parameters of the models are estimated using the maximum likelihood method. The results show that the bivariate regression model based on the bivariate t distribution has the best fit for the data, and that the presence of correlation between earnings and hours worked indicates that the bivariate model is more adequate than the univariate model.