Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Huayanay, Alex de la Cruz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-20092024-092010/
|
Resumo: |
Na classificação binária o método mais usado é o modelo de regressão logística. No entanto, vários autores indicam que esse modelo não é adequado quando os dados são desbalanceados. Diante disso, diferentes funções de ligação assimétrica, como alternativas para modelos de resposta binária, foram propostas; por exemplo, nos últimos anos foram estudadas as distribuições potência (P) e reversa de potência (RP). Neste trabalho desenvolvemos novas propriedades das distribuições P e RP no contexto de modelos para classificação em dados desbalanceados. Também, algumas métricas para classificação são estudadas através de um estudo de simulação, e uma aplicação da metologia estudada é apresentada. Além do mais, estudamos a extensão dos modelos de regressão binária para o caso misto em classificação binária no contexto de estudos longitudinais. Para avaliar o performance deste tipo de modelos apresentamos um estudo de simulação. Adicionalmente, mostramos uma aplicação da metodologia estudada para um conjunto de dados em que a variável resposta é longitudinal e desbalanceada. Para o processo de estimação dos parâmetros consideramos uma abordagem bayesiana usando um procedimento MCMC através do algoritmo No-U-Turn Sampler (NUTS). Verificações preditivas a posteriori, resíduos quantílicos aleatorizados Bayesianos e uma medida de influência bayesiana são considerados para o diagnóstico do modelo longitudinal. Diferentes modelos são comparados usando critérios de comparação de modelos. |