Modelos alternativos para classificação em dados desbalanceados

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: de la Cruz Huayanay, Alex
Orientador(a): Bazán Guzmán, Jorge Luis lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/18630
Resumo: In binary classification, the most used method is logistic regression model. However, several authors indicate that this model is not suitable when the data are imbalanced; for this, different asymmetric link functions as alternatives for binary response models have been proposed, for example, in recent years the power (P) and reverse power (RP) distributions have been presented. In this work we develop new properties of the P and RP distributions in the context of models for classification on imbalanced data. Also, some metrics for classification are studied through a simulation study, and an application of the studied methodology is presented. In addition, we extend the binary regression models to the case of mixed models for binary classification in the context of a longitudinal studies. To evaluate the performance of the models, a simulation study is performed. Additionally, an application is considered concerning the studied methodology in a dataset in which the response is longitudinal and imbalanced. For parameter estimation the Bayesian approach is considered using a MCMC procedure through the No-U-Turn Sampler (NUTS) algorithm. Further predictive checks, randomized Bayesian quantile residuals and a measure of Bayesian influence are considered for model diagnosis. Different models are compared using model selection criteria.