Modelos de regressão para resposta binária na presença de dados desbalanceados

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Huayanay, Alex de la Cruz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-08082019-103210/
Resumo: Na regressão binária, o desbalanceamento de dados refere-se à presença de valores zeros (ou uns) numa proporção significativamente maior do que os correspondentes valores uns (ou zeros). Neste trabalho, estudamos dois métodos desenvolvidos para lidar com o desbalanceamento e comparamos eles com o uso de funções de ligação assimétrica potência e reversa de potência. Os resultados mostram que esses métodos não corrigem adequadamente o viés nas estimativas dos coeficientes de regressão e que os modelos com função de ligação assimétrica considerados produzem melhores resultados para certo tipo de desbalanceamento. Adicionalmente, apresentamos uma aplicação para dados desbalanceados identificando o melhor modelo entre vários modelos propostos. A estimação dos parâmetros é realizada sob abordagem Bayesiana considerando o método de estimação Monte Carlo Hamiltoniano usando o algoritmo No-U-Turn Sampler e as comparações dos modelos são desenvolvidas utilizando diferentes critérios para comparação de modelos, avaliação preditiva e resíduos quantílicos.