Modelos de regressão para resposta binária na presença de dados desbalanceados

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Huayanay, Alex de La Cruz
Orientador(a): Bazán Guzmán, Jorge Luis lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11103
Resumo: In binary regression, imbalanced data result from the presence of values equal to zero (or one) in a proportion that is significantly greater than the corresponding real values of one (or zero). In this work, we evaluate two methods developed to deal with imbalanced data and compare them to the use of asymmetric links. The results based on simulation study show, that correction methods do not adequately correct bias in the estimation of regression coefficients and that the models with power links and reverse power considered produce better results for certain types of imbalanced data. Additionally, we present an application for imbalanced data, identifying the best model among the various ones proposed. The parameters are estimated using a Bayesian approach, considering the Hamiltonian Monte-Carlo method, utilizing the No-U-Turn Sampler algorithm and the comparisons of models were developed using different criteria for model comparison, predictive evaluation and quantile residuals.