Modelos Lomax assimétricos: uma nova abordagem para a classificação de dados binários desbalanceados

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Reis, Leticia Ferreira Murça
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28082023-201136/
Resumo: A expressão dados binários desbalanceados refere-se a um conjunto de dados em que uma das classes apresenta significativamente menos observações do que a outra. Isso prejudica a performance tanto de algoritmos de aprendizado de máquina como de modelos estatísticos, visto que a maioria dessas ferramentas supõe que os dados apresentam a mesma proporção de observações nas duas categorias. Para lidar com esse desafio, vários autores sugerem o uso de funções de ligação assimétricas na regressão binária, em detrimento das conhecidas funções de ligação simétricas: logit e probit. Assim, é possível não só melhorar a performance preditiva do modelo, como também reduzir o viés na estimação de parâmetros e de probabilidades. Portanto, este trabalho tem como objetivo apresentar novas funções de ligação assimétricas geradas a partir de transformações da distribuição Lomax. As funções propostas possuem assimetria comprovada e podem ser facilmente implementadas em softwares estatísticos. Além disso, o estudo de simulações aponta que as funções de ligação propostas neste trabalho podem performar melhor que o link logístico em diversos cenários de desbalanceamento. O uso dessas funções também se mostrou promissor na modelagem de dados reais, visto que neste trabalho obteve melhores métricas que as funções de ligação clássicas em duas aplicações.