Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Chaves, Josenildo de Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-113301/
|
Resumo: |
Apresentamos neste trabalho, uma análise bayesiana para dados clínicos exponenciais com variáveis auxiliares. Formulamos uma abordagem bayesiana com densidades a priori informativas, obtidas através das variáveis auxiliares sob o contexto de modelos lineares generalizados, para estimar os parâmetros de interesse, testar o modelo e prever a sobrevivência de pacientes com doenças graves. Diferentes funções de ligações são consideradas. O método que iremos examinar consiste na obtenção de informações a priori para a média das respostas, com correspondentes variáveis auxiliares fixas de modo que se possa induzir uma distribuição a priori sobre os coeficientes de regressão a partir de médias condicionais a priori. Esta abordagem utiliza os algoritmos computacionais do tipo Gibbs Sampling/Metropolis-Hastings e será comparada com a inferência bayesiana exata. Finalizamos com aplicações em dados clínicos exponenciais para pacientes com leucemia utilizando amostras completas e amostras censuradas. |