Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Rezende, Bruna Luiza de Faria |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24082023-084945/
|
Resumo: |
Neste trabalho, consideramos uma sequência de variáveis de Bernoulli correlacionadas cuja probabilidade de sucesso do ensaio atual depende condicionalmente dos ensaios anteriores. Essa probabilidade condicional é dada como uma função linear da média da amostra e possui dois parâmetros dos quais um deles pode assumir valores negativos. Estabelecemos para este modelo a lei forte dos grandes números, uma convergência quase certa e em Lm, uma flutuação Gaussiana da soma das variáveis aleatórias com a distribuição proposta, um princípio da invariância fraco e quase certo, o teorema central do limite e a lei do logaritmo iterado. Além disso, aplicamos todos os nossos resultados ao passeio aleatório minimal, um modelo físico com características interessantes de difusão. |