Teoremas limite para variáveis aleatórias de Bernoulli dependentes

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rezende, Bruna Luiza de Faria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24082023-084945/
Resumo: Neste trabalho, consideramos uma sequência de variáveis de Bernoulli correlacionadas cuja probabilidade de sucesso do ensaio atual depende condicionalmente dos ensaios anteriores. Essa probabilidade condicional é dada como uma função linear da média da amostra e possui dois parâmetros dos quais um deles pode assumir valores negativos. Estabelecemos para este modelo a lei forte dos grandes números, uma convergência quase certa e em Lm, uma flutuação Gaussiana da soma das variáveis aleatórias com a distribuição proposta, um princípio da invariância fraco e quase certo, o teorema central do limite e a lei do logaritmo iterado. Além disso, aplicamos todos os nossos resultados ao passeio aleatório minimal, um modelo físico com características interessantes de difusão.