Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Andrade, Rodrigo Manoel Dias |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-24082016-115504/
|
Resumo: |
Neste trabalho, mostramos que os bilhares hiperbólicos construídos originalmente por Bussolari- Lenci têm a propriedade de Bernoulli. Tais bilhares não satisfazem as técnicas standard de Wojtkowski-Markarian-Donnay-Bunimovich para bilhares focalizadores hiperbólicos, a qual requer que o diâmetro da mesa do bilhar seja de mesma ordem que o maior raio de curvatura ao longo da componente focalizadora. Nossa prova, utiliza um teorema ergódico local que nos diz que sob certas condições, existe um conjunto de medida total do espaço de fase do bilhar tal que cada ponto desse conjunto possui uma vizinhança contida (mod 0) em uma componente Bernoulli da aplicação do bilhar. |