Processo de Bernoulli correlacionado

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Novaes, Ricardo de Carli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-29082019-144638/
Resumo: O processo de Bernoulli independente, que nada mais é que uma sequência de variáveis aleatórias independentes com distribuição Bernoulli, já é amplamente conhecido na literatura estatística. Esta dissertação lida com uma generalização de tal processo: o processo de Bernoulli correlacionado, isto é, variáveis aleatórias Bernoulli dependentes em que a probabilidade de sucesso num determinado instante n+1 é uma função linear do número de sucessos até o instante n. Para este modelo, apresentamos a Lei Forte dos Grandes Números, o Teorema Central do Limite e a Lei do Logaritmo Iterado.