Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Novaes, Ricardo de Carli |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-29082019-144638/
|
Resumo: |
O processo de Bernoulli independente, que nada mais é que uma sequência de variáveis aleatórias independentes com distribuição Bernoulli, já é amplamente conhecido na literatura estatística. Esta dissertação lida com uma generalização de tal processo: o processo de Bernoulli correlacionado, isto é, variáveis aleatórias Bernoulli dependentes em que a probabilidade de sucesso num determinado instante n+1 é uma função linear do número de sucessos até o instante n. Para este modelo, apresentamos a Lei Forte dos Grandes Números, o Teorema Central do Limite e a Lei do Logaritmo Iterado. |