Processo de Bernoulli correlacionado

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Novaes, Ricardo De Carli
Orientador(a): Gava, Renato Jacob lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11708
Resumo: The independent Bernoulli process, which is a sequence of independent Bernoulli random variables, is already widely known in the statistical literature. This masters thesis works with a generalization of this process: the correlated Bernoulli process, that is, dependent Bernoulli random variables in which the probabilityof success at time n+1 is a linear function of the number of successes until time n. For this model, we present the Strong Law of Large Numbers, the Central Limit Theorem and Law of the Iterated Logarithm.