Inferência bayesiana no modelo normal assimétrico

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Rodríguez, Cristian Luis Bayes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141545/
Resumo: Esta dissertação compreende um estudo dos aspectos inferenciais da distribuição normal assimétrica, assim como o modelo de regressão considerando erros normais assimétricos. Nossa principal contribuição está na derivação de uma aproximação para a priori de Jeffreys e para informação de Fisher da distribuição normal assimétrica padrão e uma proposta de uma nova distribuição a priori não subjetiva para o parâmetro de assimetria do modelo. Também propomos uma nova reparametrização, que na abordagem clássica, permite obter formas fechadas na construção do algoritmo EM, e na abordagem bayesiana, formas conhecidas para as distribuições condicionais a posteriori, o que facilita a implementação do algoritmo de Gibbs. Estimadores bayesianos como a média, a mediana e o máximo a posteriori sob as duas prioris mencionadas acima foram comparados com o estimador de máxima verossimilhança mediante um estudo de simulação. Também foi avaliado no estudo de simulação o comportamento de estimadores intervalares, como o intervalo de confiança assitótico e os intervalos de credibilidade bayesianos. No caso de testes de hipóteses, foram comparados os desempenhos do teste de razão de verossimilhanças e do fator de Bayes.