Resumo: |
Neste trabalho, desenvolvemos uma análise de sensibilidade global para medir a robustez de estimadores bayesianos, com respeito a uma classe de distribuições a priori gerada à partir de modos de contaminação multiplicativo de uma distribuição a priori base, com estrutura similar ao considerado por van der Linde (2007). A esta classe denominamos classe de contaminação multiplicativa (\0413 M) e mostramos que, para particulares especificações, esta contém famílias de distribuições assimétricas conhecidas na literatura. Aqui, exploramos a classe de contaminação multiplicativa normal-assimétrica em vários contextos, a saber: como distribuição a priori do parâmetro de posição de um modelo normal, com variância conhecida e desconhecida, e como distribuição a priori do parâmetro regressor de um modelo linear normal, com a variância dos erros conhecida e desconhecida. Resultados de conjugação e expressões para medidas de distância entre as médias (variâncias) a posteriori fornecidas por \0413 M e a média (variância) a posteriori resultante da distribuição a priori base são apresentados. Através de um estudo de simulação, analisamos o comportamento das médias e das variâncias a posteriori, quando o modelo normal com variância desconhecida é considerado. Para o modelo de regressão, analisamos um conjunto de dados reais, fazendo uso da teoria desenvolvida. Por fim, mudamos o enfoque da análise de sensibilidade bayesiana, ao estudar a influência da classe de contaminação a priori normal-assimétrica sobre a distribuição a posteriori como um todo, comparando espaços de probabilidade a posteriori via função de concentração |
---|