Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Rodríguez, Cristian Luis Bayes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-123537/
|
Resumo: |
Esta tese compreende um estudo das propriedades da distribuição t-assimétrica fundamental. Uma das vantagens desta distribuição é o fato que permite modelar dados que apresentam assimetria e curtose diferentes da distribuição normal. Modelos lineares mistos são muito utilizados na análise de dados com medidas repetidas porque permitem modelar a correlação entre sujeitos. Uma suposição usual é a normalidade dos efeitos aleatórios e dos erros. Neste trabalho, estendemos este modelo assumindo a distribuição t-assimétrica tanto para os erros como para os efeitos aleatórios, são analisadas várias possíveis formas de estender este modelo, por exemplo, (i) considerando que os erros e os efeitos aleatórios seguem conjuntamente uma distribuição t-assimétrica e (ii) assumindo que eles são independentes e seguem a distribuição t-assimétrica. Resultam como casos especiais destas suposições os modelos simétricos t-Student e normal e o modelo normal-assimétrico. Para obtenção das estimativas desenvolvemos algoritmos do tipo MCMC. Aplicações a diversos conjuntos de dados são apresentadas. |