Inferência bayesiana em modelos lineares mistos t-assimétricos.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Rodríguez, Cristian Luis Bayes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-123537/
Resumo: Esta tese compreende um estudo das propriedades da distribuição t-assimétrica fundamental. Uma das vantagens desta distribuição é o fato que permite modelar dados que apresentam assimetria e curtose diferentes da distribuição normal. Modelos lineares mistos são muito utilizados na análise de dados com medidas repetidas porque permitem modelar a correlação entre sujeitos. Uma suposição usual é a normalidade dos efeitos aleatórios e dos erros. Neste trabalho, estendemos este modelo assumindo a distribuição t-assimétrica tanto para os erros como para os efeitos aleatórios, são analisadas várias possíveis formas de estender este modelo, por exemplo, (i) considerando que os erros e os efeitos aleatórios seguem conjuntamente uma distribuição t-assimétrica e (ii) assumindo que eles são independentes e seguem a distribuição t-assimétrica. Resultam como casos especiais destas suposições os modelos simétricos t-Student e normal e o modelo normal-assimétrico. Para obtenção das estimativas desenvolvemos algoritmos do tipo MCMC. Aplicações a diversos conjuntos de dados são apresentadas.