Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Tófoli, Paula Virgínia |
Orientador(a): |
Ziegelmann, Flavio Augusto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/115528
|
Resumo: |
O presente trabalho foi motivado pela forte demanda por modelos de dependência mais precisos e realistas para aplicações a dados financeiros multivariados. A recente crise financeira de 2007-2009 deixou claro quão importante é uma modelagem precisa da dependência para a avaliação correta do risco financeiro: percepções equivocadas sobre dependências extremas entre diferentes ativos foram um elemento importante da crise do subprime. O famoso teorema dc Sklar (1959) introduziu as cópulas como uma ferramenta para se modelar padrões de dependência mais sofisticados. Ele estabelece que qualquer função de distribuição conjunta ndimensional pode ser decomposta em suas n distribuições marginais e uma cópula, sendo que a última caracteriza completamente a dependência entre as variáveis. Enquanto existe uma variedade de famílias de cópulas bivariadas que podem descrever um amplo conjunto de dependências complexas, o conjunto de cópulas com dimensão mais elevada era bastante restrito até recentemente. Joe (1996) propôs uma construção de distribuições nmltivariadas baseada em pair-copulas (cópulas bivariadas), chamada pair-copula construction ou modelo de vine cópula, que reverteu esse problema. Nesta tese, desenvolvemos três ensaios que exploram a teoria de cópulas para obter modelos de dependência multivariados muito flexíveis para aplicações a dados financeiros. Patton (2006) estendeu o teorema de Sklar para o caso de distribuições condicionais e tornou o parâmetro de dependência da cópula variante no tempo. No primeiro ensaio, introduzimos um novo enfoque para modelar a dependência entre retornos financeiros internacionais ao longo do tempo, combinando cópulas; tempo-variantes e o modelo de mudança Markoviana. Aplicamos esses modelos de cópula e também os modelos propostos por Patton (2006), Jondeau e Rockinger (2006) e Silva Filho et al. (2012a) aos retornos dos índices FTSE 100, CAC 40 e DAX. Comparamos essas metodologias em termos das dinâmicas de dependência resultantes e das habilidades dos modelos em prever Valor em Risco (VaR). Interessantemente, todos os modelos identificam um longo período de alta dependência entre os retornos começando em 2007, quando a crise do subprime teve início oficialmente. Surpreendentemente, as cópulas elípticas mostram melhor desempenho na previsão dos quantis extremos dos retornos dos portfólios. No segundo ensaio, estendemos nosso estudo para o caso de n > 2 variáveis, usando o modelo de vine cópula para investigar a estrutura de dependência dos índices CAC 40, DAX, FTSE 100, S&P 500 e IBOVESPA, e, particularmente, checar a hipótese de dependência assimétrica nesse caso. Com base em nossos resultados empíricos, entretanto, essa hipótese não pode ser verificada. Talvez a dependência assimétrica com caudas inferiores mais fortes ocorra apenas temporariamente, o que sugere que a incorporação de variação temporal ao modelo de vine cópula pode melhorá-lo como ferramenta para modelar dados financeiros internacionais multivariados. Desta forma, no terceiro ensaio, introduzimos dinâmica no modelo de vine cópula permitindo que os parâmetros de dependência das pair-copulas em uma decomposição D-vine sejam potencialmente variantes no tempo, seguindo um processo ARMA(l,m) restrito como em Patton (2006). O modelo proposto é avaliado em simulações e também com respeito à acurácia das previsões de Valor em Risco (VaR) em períodos de crise. Os experimentos de Monte Cailo são bastante favoráveis à cópula D-vine dinâmica em comparação a uma cópula D-vine estática. Adicionalmente, a cópula D-vine dinâmica supera a cópula D-vine estática em termos de acurária preditiva para os nossos conjuntos de dados |