Um teste para dependência de valores extremos utilizando cópulas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Eugênio Filho, Eleanderson Campos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação em Estatística e Experimentação Agropecuária
UFLA
brasil
Departamento de Ciências Exatas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/12481
Resumo: In the statistical modeling of risks, in the fields of finance and actuary, it is usual that the assumption of independent risks is adopted, or yet, to model the risks by a multivariate normal distribution. In practice, however, independence is exception and the multivariate normal distribution only captures linear dependence between risks, which, in reality, often exhibits complex dependence structures. Copulas are models that circumvents theses limitations, since they cover, besides linear dependence, nonlinear cases. Among several copula families, stands out extreme value copulas, which models variables/risks that show extreme value dependence, a particularly dangerous case for the risk analyst, once it represents large losses that could happen jointly. Therefore, it is important that extreme value dependence be detected in the process of risk assessment. Given that, using extreme value copulas, a new method was elaborated to test whether a bivariate dataset exhibits extreme value dependence. The test performed efficiently in most cases, keeping type I error rates close to the nominal level and being as powerful as the best tests.