Seleção de modelos cópula-GARCH: uma abordagem bayesiana

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Rossi, João Luiz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
DIC
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25072012-164417/
Resumo: Esta dissertação teve como objetivo o estudo de modelos para séries temporais bivariadas, que tem a estrutura de dependência determinada por meio de funções de cópulas. A vantagem desta abordagem é que as cópulas fornecem uma descrição completa da estrutura de dependência. Em termos de inferência, foi adotada uma abordagem Bayesiana com utilização dos métodos de Monte Carlo via cadeias de Markov (MCMC). Primeiramente, um estudo de simulações foi realizado para verificar como os seguintes fatores, tamanho das séries e variações nas funções de cópula, nas distribuições marginais, nos valores do parâmetro de cópula e nos métodos de estimação, influenciam a taxa de seleção de modelos segundo os critérios EAIC, EBIC e DIC. Posteriormente, foram realizadas aplicações a dados reais dos modelos com estrutura de dependência estática e variante no tempo