[en] COPULA MODELS FOR STREAMFLOW SCENARIO SIMULATION
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33720&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33720&idi=2 http://doi.org/10.17771/PUCRio.acad.33720 |
Resumo: | [pt] Muitos dos modelos de simulação de cenários de vazões, necessários para o planejamento e operação de setores elétricos, são construídos sob hipóteses rígidas. Isto pode restringir sua capacidade de representar dependências não-lineares e\ou distribuições não usuais. Cópulas superam estas limitações. Elas possibilitam que o comportamento marginal das variáveis seja modelado separadamente da estrutura de dependência do vetor aleatório. Além do mais, podem representar os mais diversos tipos de associações. Isto posto, esta tese apresenta 3 artigos onde modelos de cópulas são desenvolvidos visando a simulação de cenários de vazões. No primeiro artigo, propomos um modelo periódico de cópulas vine espaciais para simulação multivariada. As principais contribuições são a extensão para o caso periódico dos modelos de cópulas vine espaciais; a drástica redução do número de parâmetros; o desenvolvimento de um modelo não linear multivariado para simulação de cenários de vazões que incorpora a dependência temporal, a dependência espacial, a variação sazonal e o elevado número de usinas (alta dimensão). No segundo artigo, realizamos algumas modificações no modelo periódico espacial proposto que resultam em uma menor complexidade sem perda de performance. No terceiro artigo, propomos uma metodologia baseada em cópulas vine para modelar a dependência temporal de séries periódicas uni variadas de vazões. Dentre as contribuições destaca-se a construção de uma versão não-linear dos modelos periódicos autorregressivos (PAR(p)) onde a dependência temporal de qualquer ordem pode ser considerada; a possibilidade da incorporação de efeitos lineares e não-lineares; um modelo que não simula cenários com valores negativos; a flexibilidade para se modelar as distribuições marginais mensais. |