O primeiro autovalor do laplaciano em variedades riemannianas

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Klaser, Patrícia Kruse
Orientador(a): Ripoll, Jaime Bruck
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/115502
Resumo: Propriedades do primeiro autovalor e da primeira autofunção do operador laplaciano em variedades riemannianas são estudadas. Para variedades em que se pode estimar o laplaciano de funções distância, estimativas explícitas para o primeiro autovalor do laplaciano em domínios duplamente conexos são obtidas. Então observamos que hipóteses sobre as curvaturas da variedade e do bordo do domínio permitem estimar o laplaciano da distância. Além disso, autofunções em domínios não compactos do espaço hiperbólico EI" são estudadas. Mostramos que donn'nios contidos em horobolas não admitem autofunções limitadas associadas ao autovalor A(HIn), mas se o fecho assintótico do domínio contém um aberto de (9ooIHIn, então ele admite uma autofunção positiva que se anula em dfí U dooQ. A existência e o perfil de autofunções de autovalor A(IHI") em EI", em IHIn\Sr(o), em horobolas, em hiperbolas e no complementar de horobolas são analisados. Para alguns desses domínios apresentamos uma expressão explícita para a autofunção que depende apenas da distância à fronteira. Finalmente, técnicas de simetrização de Schwarz são adaptadas para variedades permitindo-nos obter estimativas para normas de autofunções. Primeiro um argumento de comparação demonstra que variedades mais simétricas maximizam certas normas. Obtenios também uma estimativa diretamente da função isoperimétrica da variedade.