Maximizando o primeiro autovalor do operador de Jacobi

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Vasconcelos, Rosa Tayane de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/72438
Resumo: We consider the Jacobi operator, defined on a closed oriented hypersurfaces immersed in the Euclidean space with the same volume of the unit sphere by L = −∆−|II|2, where −∆ is the Laplace-Beltrami operator with ∆u = div(∇u) and |II| 2 = ∑nj = 1k2j is the square of second fundamental form. We show a generalization for the classical result of the Willmore functional for the Euclidean sphere. As a consequence, by adding a topological hypothesis we prove that the fi rst eigenvalue of the Jacobi operator in the Euclidean sphere is a global maximum.