Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Vasconcelos, Rosa Tayane de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/72438
|
Resumo: |
We consider the Jacobi operator, defined on a closed oriented hypersurfaces immersed in the Euclidean space with the same volume of the unit sphere by L = −∆−|II|2, where −∆ is the Laplace-Beltrami operator with ∆u = div(∇u) and |II| 2 = ∑nj = 1k2j is the square of second fundamental form. We show a generalization for the classical result of the Willmore functional for the Euclidean sphere. As a consequence, by adding a topological hypothesis we prove that the fi rst eigenvalue of the Jacobi operator in the Euclidean sphere is a global maximum. |