Dualidade de Poincaré e invariantes cohomológicos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Cellini, Caroline Paula [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/99831
Resumo: Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados.