Cohomologia de grupos e invariante algébricos

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Santos, Anderson Paião dos [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/94268
Resumo: Para todo grupo G infinito, finitamente gerado, pode-se obter para o invariante algébrico end, mais precisamente o número de ends e(G), uma fórmula cohomológica 1-dimensional. O principal objetivo deste trabalho é apresentar, sob certas hipóteses, uma fórmula cohomológica 1-dimensional para o invariante algébrico e(G,H), definido por Scott e Houghton, onde H é um subgrupo de G (Teorema de Swarup). Para tanto, o conceito de subconjunto H-quase invariante de G e resultados como a interpretação do grupo de cohomologia H1(G,M) em termos de derivações (à direita), onde M é um ZG-módulo, e o Lema de Shapiro, são resultados imprescindíveis. Algumas relações desses invariantes com ends de espaços são também apresentadas.