Hipersuperfícies com Hessiano Nulo em P4

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Freitas, Gersica Valesca Lima de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Matemática
Programa de Pós-Graduação em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/9242
Resumo: Hesse claimed in [9] that an irreducible projective hypersurface in Pn de ned by an equation with vanishing hessian determinant is necessarily a cone. Gordan and Noether proved in [6] that this is true for n 3 and constructed counterexamples for every n 4. Gordan-Noether and Franchetta gave a classi cation of hypersurfaces in P4 with vanishing hessian and which are not cones, see [6] and [3]. Here we give a geometric approach to the classi cation proposed by Gordan-Noether, providing a classi cation of hypersurfaces with zero Hessian in P4, following the lines of Garbagnati-Reppeto in [4].