Hipersuperfícies cúbicas de hessiano nulo e cúbicas desenvolvíveis

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: José Gondim Neves, Rodrigo
Orientador(a): Simis, Aron
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/7117
Resumo: O tema central da presente tese é a descrição algebro-geométrica de hipersuperfícies cúbicas, que não são cones e cujo hessiano é identicamente nulo. Hesse (1851) acreditava ter caracterizado os cones por intermédio do anulamento do determinante hessiano, entretanto Gordan e Noether (1876) construíram classes de exemplos de hipersuperfícies que não são cones e cujo hessiano é identicamente nulo. Baseado no posterior trabalho de Perazzo (1902), para as cúbicas, demos formas canônicas e teoremas de estrutura geométricos para tais hipersuperfícies, completando a classificação das mesmas em um espaço projetivo de dimensão menor ou igual a sete. Sob uma ótica mais moderna enfatizamos a conexão entre tais hipersuperfícies e as hipersuperfícies desenvolvíveis, cujo mapa de Gauss é degenerado, via o hessiano que é um importante invariante nesse contexto. Além de produzirmos novos exemplos de hipersuperfícies desenvolvíveis demos uma classificação das mesmas em um espaço de dimensão menor que 6. As hipersuperfícies desenvolvíveis são um moderno e importante tema de pesquisa em várias áreas da matemática tendo ainda aplicações em computação gráfica, desenho industrial e física. Exemplos em dimensão maior que 4 são raros e o entendimento de sua estrutura geométrica é de grande interesse