On the phase transition for some percolation models in random environments

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Marcos Vinícius Araújo Sá
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE MATEMÁTICA
Programa de Pós-Graduação em Matemática
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/50999
Resumo: Nesta tese nós consideramos dois modelos de percolação em ambientes aleatórios e estamos interessados em seus fenômenos de transição de fase. O primeiro modelo de percolação estudado é na rede cúbica apresentando desordem colunar. Este modelo é definido em dois passos: primeiro as colunas verticais de $\mathbb{Z}^3$ são removidas independentemente com probabilidade $1-\rho$ e, no segundo passo, os elos conectando sítios na sub-rede remanescente são declarados abertos com probabilidade $p$ de modo independente. Nosso resultado mostra que existe $\delta>0$ tal que o ponto crítico $p_c(\rho)<1/2-\delta$ para todo $\rho>\rho_c$, onde $\rho_c$ denota o ponto crítico da percolação de sítios em $\mathbb{Z}^2$. O segundo modelo é na rede quadrada esticada horizontalmente, que consiste de uma versão generalizada de $\mathbb{Z}^2_+$ obtida ao se esticar a distância entre suas colunas, segundo uma variável aleatória positiva $\xi$. Neste modelo a probabilidade de um elo ser declarado aberto decairá exponencialmente segundo seu comprimento. Nosso resultado mostra a existência da transição de fase quando $\mathbb{E}(\xi^\eta)<\infty$, para algum $\eta>1$, e a ausência quando $\mathbb{E}(\xi^\eta)=\infty$, para algum $\eta<1$.