Uma versão quantitativa do Teorema de Grimmett-Marstrand

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Célio Augusto Terra de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE MATEMÁTICA
Programa de Pós-Graduação em Matemática
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/47524
Resumo: In whis work we present a recent result by H. Duminil-Copin, G. Kozma and V. Tassion, giving an upper bound for the critical percolation parameter in slabs. Through a renormalization scheme coupled with an exploratory process, we prove that p_c(Slab_n^d)=p_c+O(1/\sqrt{log n})$. Using this bound we show an upper bound for the correlation length $\xi_p$, concluding that $\xi_p \le \exp(C(p-p_c)^{-2})$ for some constant $C$ large enough.