Random walk on the zero-range process
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE MATEMÁTICA Programa de Pós-Graduação em Matemática UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/50995 https://orcid.org/0000-0003-4875-3805 |
Resumo: | O tema principal desta tese é o estudo de passeios aleatórios em ambientes aleatórios. Mais especificamente, estudaremos um passeio aleatório que se move em um meio que é não-homogêneo em $\mathbb{Z}$ e se modifica ao longo do tempo, denominado ambiente aleatório dinâmico. Neste caso, o ambiente será um sistema de partículas interagentes em $\mathbb{Z}$ conhecido como processo \textit{zero-range}. O nome vem do fato de que, nesse sistema, as partículas interagem umas com as outras somente quando estão no mesmo sítio. Denotaremos este processo por $\eta=(\eta_{t})_{t \geq 0}$. Vamos assumir que o ambiente esteja em equilíbrio. Diremos que o sítio $x \in \mathbb{Z}$ está ocupado por partículas no tempo $t$ se $\eta_{t}(x)>0$ e, caso contrário, diremos que $x$ está vacante. Sejam $\alpha_{\bullet}, \beta_{\bullet}, \alpha_{\circ}$ e $\beta_{\circ}$ números reais positivos. Sobre $\eta$ definimos um passeio \linebreak aleatório $X=(X_t)_{t \geq 0}$, a tempo contínuo e com saltos de primeiros vizinhos, que começa na origem e evolui da seguinte maneira: quando $X$ se encontra sobre um sítio ocupado por partículas, ele salta para a direita com uma taxa $\alpha_{\bullet}$ e para a esquerda com uma taxa $\beta_{\bullet}$; quando $X$ está sobre um sítio vacante, essas taxas são respectivamente $\alpha_{\circ}$ e $\beta_{\circ}$. Aqui, o passeio aleatório não interfere na evolução do ambiente. Estudaremos o comportamento assintótico deste passeio aleatório ao longo do tempo no caso em que $X$ possui um \textit{drift} local positivo para a direita. Mais precisamente, supondo que as diferenças $\alpha_{\bullet}-\beta_{\bullet}$ e $\alpha_{\circ}-\beta_{\circ}$ sejam suficientemente grandes, obteremos uma lei dos grandes números para $X$. Isto é, mostraremos que $X_t/t$ converge quase certamente para um valor $v$, que depende da densidade de partículas do ambiente. Passeios aleatórios em ambientes aleatórios dinâmicos dados por sistema de partículas interagentes têm atraído bastante interesse nas últimas duas décadas. Várias técnicas foram desenvolvidas e usadas para obter resultados refinados sobre esses processos como leis dos grandes números, teoremas centrais do limite, princípios de invariância e estimativas de grandes desvios. Algumas dessas técnicas são regeneração, técnicas analíticas e renormalização em multi-escala. A aplicabilidade de cada uma das técnicas e o alcance dos resultados dependem das propriedades de mistura (mixing) do ambiente. Neste contexto, sistemas de partículas conservativos como o processo de exclusão, passeios aleatórios independentes e o processo zero-range atraíram muita atenção devido à falta de boas propriedades de mistura. Assim, esperamos que os resultados nesta tese contribuam para a compreensão matemática desses processos. |