Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Barros, Bruno Gouvêa de
 |
Orientador(a): |
Santos, Rodrigo Weber dos
 |
Banca de defesa: |
Navaux, Philippe Olivier Alexandre
,
Leite, Saul de Castro
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/3486
|
Resumo: |
Os modelos computacionais tornaram-se ferramentas valiosas para o estudo e compreensão dos fenômenos da eletrofisiologia cardíaca. No entanto, a elevada complexidade dos processos biofísicos e o nível microscópico de detalhes exigem complexos modelos computacionais. Aspectos-chave da eletrofisiologia cardíaca, tais como condução lenta e bloqueio de condução tem sido tema de pesquisa de muitos estudos, uma vez que estão fortemente relacionados à arritmia cardíaca. No entanto, ao reproduzir estes fenômenos os modelos necessitam de uma discretização sub-celular para a solução das equações diferenciais e uma condutividade eléctrica do tecido não uniforme e heterogênea. Devido aos elevados custos computacionais de simulações que reproduzem a microestrutura fina do tecido cardíaco, estudos prévios têm considerado experimentos de tecido de pequenas dimensões e têm utilizados modelos simples de células cardíacas. Neste trabalho, desenvolvemos um modelo (modelo microscópico) da eletrofisiologia cardíaca que capta a microestrutura do tecido cardíaco usando uma discretização espacial muito fina (8µm) e utilizamos um modelo celular moderno e complexo baseado em Cadeias de Markov para a caracterização da estrutura e dinâmica dos canais iônicos. Para lidar com os desafios computacionais, o modelo foi paralelizado usando uma abordagem híbrida: a computação em cluster e GPGPUs (General-purpose computing on Graphics Processing Units). Nossa implementação paralela deste modelo, utilizando uma plataforma multi-GPU, foi capaz de reduzir os tempos de execução das simulações de mais de 6 dias (em um único processador) para 21 minutos (em um pequeno cluster de 8 nós equipado com 16 GPUs). Além disso, para diminuir ainda mais o custo computacional, foi desenvolvido um modelo discreto equivalente ao modelo microscópico. Este novo modelo foi paralelizado usando a mesma abordagem do modelo microscópico e foi capaz de executar simulações que demoravam 21 minutos em apenas 65 segundos. Acreditamos que esta nova implementação paralela abre caminho para a investigação de muitas questões em aberto associadas à natureza complexa e discreta da propagação dos potenciais de ação no tecido cardíaco. |