Agrupando dados e kernels de um simulador cardíaco em um ambiente multi-GPU

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Cordeiro, Raphael Pereira lattes
Orientador(a): Lobosco, Marcelo lattes
Banca de defesa: Rocha, Bernardo Martins lattes, Xavier, Carolina Ribeiro lattes, Bentes, Cristiana Barbosa lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
GPU
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/5418
Resumo: A modelagem computacional é uma ferramenta útil no estudo de diversos fenômenos complexos, como o comportamento eletro-mecânico do coração em condições normais e patológicas, sendo importante para o desenvolvimento de novos medicamentos e métodos de combate às doenças cardíacas. A alta complexidade de processos biofísicos se traduz em complexos modelos matemáticos e computacionais, o que faz com que simulações cardíacas necessitem de um grande poder computacional para serem executadas. Logo, o estado da arte em simuladores cardíacos é implementado para ser executado em arquiteturas paralelas. Este trabalho apresenta a implementação e avaliação de um método com dados e kernel agregados, método este utilizado para reduzir o tempo de computação de códigos que executam em ambientes computacionais compostos de múltiplas unidades de processamento gráfico (Graphics Processing Unit ou simplesmente GPUs). Este método foi testado na computação de uma importante parte da simulação da eletrofisiologia do coração, a resolução das equações diferenciais ordinárias (EDOs), resultando em uma redução pela metade do tempo necessário para a sua resolução, quando comparado com o esquema onde este método não foi implementado. Com o uso da técnica proposta neste trabalho, o tempo total de execução das simulações cardíacas foi reduzido em até 25%.