Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Ana Maria Alves da lattes
Orientador(a): Euzébio, Rodrigo Donizete lattes
Banca de defesa: Euzébio, Rodrigo Donizete, Roberto, Luci Any Francisco, Martins, Ricardo Miranda, Andrade, Kamila da Silva, Oliveira, Regilene Delazari dos Santos
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12415
Resumo: In this thesis, periodic trajectories in planar discontinuous piecewise linear systems with a nonregular switching line are studied. We provide sharp upper bounds of one or two limit cycles for certain classes of the model considered. We also establish the stability and hyperbolicity of these limit cycles. In addition, we provide examples reaching one and two limit cycles for these classes. We perform the global analysis of a representative model through bifurcation theory to analyze the birth of limit cycles, sliding periodic trajectories, and tangential ones. We also provide some results addressing the coexistence of periodic trajectories. We studied Fast-Slow systems with nonregular switching line with a new approach. This study allows proving that a specific sliding periodic trajectory is in fact a homoclinic trajectory. This homoclinic trajectory arises from a bifurcation of sliding limit cycles that are not topologically equivalents. We propose the theory of piecewise rotated vector fields with the goal of understanding how the trajectories of two families of rotated vector fields behave as the same parameter is varied. In this context, we prove the non-intersection theorem for closed periodic trajectories for piecewise rotated vector fields.