Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Santos, Heron Felipe Rosas dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Rio das Ostras
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://app.uff.br/riuff/handle/1/14392
|
Resumo: |
Prognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change model |