O impacto da janela de Hurst na previsão de séries temporais financeiras

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Diniz, Natália
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/96/96133/tde-20122011-165838/
Resumo: Sabe-se que, na literatura, existem muitos modelos para se fazer previsão para séries temporais financeiras. Sabe-se também que não há um modelo perfeito e que os mais utilizados atualmente são os modelos de redes neurais recorrentes e os da família GARCH. Referências internacionais apontam que existe uma técnica de medição de uma janela temporal para se identificar o tipo de comportamento existente em uma série temporal; tal técnica é conhecida como Expoente de Hurst. É uma medida que qualifica a série como persistente ou anti-persistente. Este trabalho analisou se o Expoente de Hurst, interfere na qualidade das previsões feitas com o modelo de redes neurais recorrentes com e sem o uso do filtro de ondaletas, utilizando os preços diários das principais commodities, ações negociadas no mercado e a taxa de câmbio. no período de janeiro de 1998 a dezembro de 2010. Com a pesquisa observa-se, na maioria dos casos, há uma possível melhora na qualidade das previsões para as séries antipersistentes.