Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
SANTOS JÚNIOR, Domingos Sávio de Oliveira |
Orientador(a): |
MATTOS NETO, Paulo Salgado Gomes de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/45606
|
Resumo: |
Nas últimas décadas Sistemas Híbridos (SH) que utilizam a modelagem residual têm sido amplamente aplicados no contexto de previsão de séries temporais. Esta abordagem utiliza como resultado final a combinação da previsão de um modelo linear com a previsão do resíduo obtida por um modelo de Aprendizagem de Máquina (AM) não linear. Essa série de resíduo representa a diferença entre a saída do modelo linear e valor real da série temporal. Uma vez que normalmente são encontrados padrões lineares e não lineares em séries temporais reais, esta classe de SH tem alcançado resultados empíricos e teóricos promissores em razão da sua arquitetura ser capaz de modelar esses padrões em etapas especificas. Contudo, são identifi- cadas limitações na etapa de modelagem residual, sendo que por conta de sua complexidade, um modelo de AM pode apresentar problemas de má especificação de parâmetros, sobreajuste e subajuste, prejudicando os resultados de todo o SH. Baseado neste problema, este trabalho propõe um método de ensemble para previsão residual (Ensemble method for Residual Forecast (ERF)). O método ERF é composto por três fases gerais: (i) previsão da série temporal por meio de um modelo linear; (ii) previsão do erro realizada por um ensemble; (iii) combinação pela soma das previsões das fases (i) e (ii). A fase (ii) é a principal contribuição desta tese, na qual é proposta uma abordagem homogênea que cria um ensemble de modelos de AM diverso e de forma sistemática. O ARIMA é utilizado como modelo linear, já como modelo não linear são avaliados o MLP e SVR. Desta forma, são obtidas duas versões do método proposto. Es- sas versões são aplicadas em doze séries temporais reais com os respectivos modelos simples (ARIMA, MLP e SVR) e oito sistemas híbridos da literatura. Todos os métodos são avalia- dos por meio da métrica Raiz do Erro Quadrático Médio e testes estatísticos de Wilcoxon, Friedman e Nemenyi. Com base nessas formas de avaliação, visualiza-se que as abordagens propostas possuem a capacidade de encontrar bons resultados quando aplicadas em diferentes séries temporais. |