[pt] APLICAÇÃO DA METODOLOGIA DE REDES NEURAIS EM PREVISÃO DE SÉRIES TEMPORAIS

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: ELIANA ZANDONADE
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8641&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8641&idi=2
http://doi.org/10.17771/PUCRio.acad.8641
Resumo: [pt] Este trabalho associa previsão de Séries Temporais a uma nova metodologia de processamento de informação: REDE NEURAL. Usaremos o modelo de Retropropagação, que consiste em uma Rede Neural multicamada com as unidades conectadas apenas com a unidades conectadas apenas com as unidades da camada subseqüente e com a informação passando em uma única direção. Aplicaremos o modelo de retropropagação na análise de quatro séries temporais: uma série ruidosa. Uma série com tendência, uma série sazonal e uma série de Consumo de Energia Elétrica da cidade de Uruguaiana, RS. Os resultados obtidos serão comparados com os modelos ARIMA de Box e Jenkins e um modelo com intervenção