Convergência completa do método do gradiente com busca linear exata e inexata
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas BR UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/3682 |
Resumo: | Neste trabalho utilizamos o método do gradiente para minimizar, sem restrições, funções continuamente diferenciáveis pseudo-convexas e convexas. Um termo considerado importante é o cálculo do comprimento do passo. Na minimização de funções pseudo-convexas a busca linear é exata. Neste caso, apresentamos o primeiro algoritmo para o cálculo do comprimento do passo, onde é acrescentado um termo de regularização quadrático no sentido do método do ponto proximal. Posteriormente, na minimização de funções convexas, a busca linear é inexata. Para o cálculo do comprimento do passo apresentamos dois algoritmos: um necessita que o gradiente da função objetivo satisfaça uma condição de Lipschitz com constante L > 0 conhecida, e o outro é baseado no trabalho desenvolvido por Dennis-Schnabel (ver [4]). Os três processos baseiam-se na noção da quase-Fejér convergência. Embora os métodos de descida necessitem que a função objetivo a ser minimizada possua conjuntos de níveis limitados a fim de estabelecer que os pontos de acumulação sejam estacionários, nesta abordagem é garantida a convergência completa de toda sequência para um minimizador da função sem a hipótese de limitação do conjunto de nível. |