Um método de gradiente não monótono para problemas de otimização multiobjetivo com restrições

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Souza, Dainara Silva de
Outros Autores: http://lattes.cnpq.br/7078380951290584
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
.
Link de acesso: https://tede.ufam.edu.br/handle/tede/10246
Resumo: Nesta dissertação, consideramos um método de gradiente não monótono para problemas de Otimização Multiobjetivo com restrições suaves. Sob suposições suaves, demonstramos a estacionariedade de Pareto do ponto de acumulação da sequência gerada por este método, e provamos a convergência da sequência completa para uma solução ótima de Pareto fraco do problema quando a função é convexa. Impondo algumas suposições sobre os gradientes das funções objetivo e as direções de busca linear fornecemos a convergência da sequência de valores da função objetivo para o valor ideal. O ponto inicial nos resultados de convergência estabelecidos aqui podem ser qualquer um no conjunto de restrições. Além disso, mostramos os resultados numéricos ao aplicar este método.