Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
GONAÇALVES, Max Leandro Nobre
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
FERREIRA, Orizon Pereira
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Mestrado em Matemática
|
Departamento: |
Ciências Exatas e da Terra
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tde/1961
|
Resumo: |
The search for solutions of nonlinear equations in the Euclidean spaces is object of interest in some areas of science and engineerings. Due the speed of convergence and computational efficiency, the inexact Newton method and its variations have been suficiently used to obtain solutions of these equations. In this dissertation we present a local analysis of convergence of the inexact Newton method and some of its variations, more specifically the inexact Newton-like method and the inexact modified Newton method. This analysis has the disadvantage to demand the previous knowledge of a zero of the operator in consideration and the hypotheses on the behavior of the operator at this zero, but on the other hand it supplies to information on the convergence rate and convergence radius. |