Um algoritmo de busca linear para otimização irrestrita

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Daniele Alencar Fabrício da
Outros Autores: http://lattes.cnpq.br/2906859199434160
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/6199
Resumo: Neste trabalho apresentamos um algoritmo de busca linear para problemas de otimização irrestrita proposto por Gonglin Yuan, Sha Lu e Zengxi Wei [1], denominado aqui por Algoritmo GSZ. Este algoritimo é concebido sob a perspectiva de herdar a simplicidade e o baixo custo computacional do método do gradiente conjugado. Neste contexto, uma prova detalhada da análise de convergência global para funções não necessariamente convexas é apresentada. Ressaltamos ainda a obtenção da taxa de convergência linear para o caso em que a função é fortemente convexa.