Sólitons de Ricci com estrutura de Produto Deformado

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Freitas Filho, Antonio Airton
Outros Autores: http://lattes.cnpq.br/3677204080145270
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/5872
Resumo: Nesta tese mostramos que um sóliton de Ricci gradiente com estrutura de produto deformado expansivo ou estacionário, cuja função deformadora atinge um máximo e um mínimo, deve ser um produto Riemanniano usual. Encontramos uma condição ne-cessária e suficiente para construir sólitons de Ricci gradientes com estrutura de produto deformado. Como aplicação, apresentamos uma nova classe de sólitons de Ricci gradien-tes com estrutura de produto deformado expansivo, tendo como fibra uma variedade de Einstein de curvatura escalar não-positiva. Também discutimos algumas obstruções para esta construção, especialmente quando a base do produto deformado é compacta. Em seguida introduzimos os sólitons de Ricci modificados como uma classe de métricas tipo-Einstein que contém os sólitons de Ricci e as métricas m-quasi-Einstein. Por um lado, tal classe está relacionada à construção de sólitons de Ricci realizados como produtos deformados, por outro lado, um sóliton de Ricci modificado compõe uma solução auto-similar do fluxo Ricci-Harmônico modificado, resultando em uma nova caracterização para as métricas m-quasi-Einstein. Além disso, definimos os quase sólitons de Ricci modificados. Em particular, na direção dos teoremas de Lichnerowicz e Obsta, prova-mos que, na classe de variedades compactas com curvatura escalar constante, a esfera euclidiana tem estrutura bem determinada de quase sóliton de Ricci gradiente modifi-cado, sendo rígida, desde que se tenha uma condição geométrica específica. Também encontramos uma condição de existência para a construção de quase sólitons de Ricci com estrutura de produto deformado e, finalmente, exibimos um exemplo de sóliton de Ricci não-gradiente com estrutura de produto deformado expansivo.